If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-6(3x^2-4))/(x^2+4)^3=0
Domain of the equation: (x^2+4)^3!=0We multiply all the terms by the denominator
x∈R
(-6(3x^2-4))=0
We calculate terms in parentheses: +(-6(3x^2-4)), so:We get rid of parentheses
-6(3x^2-4)
We multiply parentheses
-18x^2+24
Back to the equation:
+(-18x^2+24)
-18x^2+24=0
a = -18; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-18)·24
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*-18}=\frac{0-24\sqrt{3}}{-36} =-\frac{24\sqrt{3}}{-36} =-\frac{2\sqrt{3}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*-18}=\frac{0+24\sqrt{3}}{-36} =\frac{24\sqrt{3}}{-36} =\frac{2\sqrt{3}}{-3} $
| 7a=2a-63 | | -8r=2r+20 | | 6x/(x^2+4)^2=0 | | -7x+36=-8x+3.2 | | n+7=2n-2 | | 10m-17=11m+11 | | 8-3x=3+1/4 | | x−13=2x−10 | | 5s-1=6s+7 | | 6x+6=2x+3 | | Y=-0.3x-4.8 | | 7(6x+74)=-4 | | (3-2x)(2x+9)-3(5x-1)(4-x)=0 | | 6/x-6=-5/2x-12+2 | | 4x-3(2x-1)=5x-3 | | 5x+10=x-17 | | -3/2r=-3/5 | | 8x+4=12x-14 | | x/2+45=3x | | 10=h | | -8(x-1)=2(1-4x)-9 | | 9(4x-8)=3(12+4) | | 16p-12=292 | | 9x-2(x-3)=7x+3 | | 31/4x=26 | | 44m-2=86 | | 7r-4r+3=6r+3-r | | 8+3d=23 | | (-0.0049=1)(0.052500=x) | | x-2.97=4.52 | | -0.0049=1(0.052500=x) | | 400-3p=-100+2p |